EEMC Calibration Summary from 2003 p+p Data

Three independent methods to obtain absolute calibrations.

MIP's: peak locations/slopes

✓ p/E of electrons using TPC tracks

• Reconstruction of π^0 mass

Relative Gains from MIPs

- ✓ For $1.1 \le \eta \le 1.4$, use MIP's tracked by the TPC
- MIP predicted to enter/exit given tower
- ✓ 5% sampling fraction used to convert to equivalent shower energy.

Fits to the observed peak shape determines the absolute gain of a given tower. Fit is to a Landau distribution.

Calibration using p/E of electrons

Electrons selected using TPC dE/dx information. Relative tower gains from MIP's, absolute gains adjusted to match TPC p to EEMC E.

Energy-loss divided by Bethe-Bloch prediction – purities from 25-65%

Electron candidates

Background region

Calibration using p/E of electrons

Reconstruction of π^{0} 's

Clusters formed around "seed" towers w/ E > 0.7 GeV. Two cluster invariant mass spectra of "resolved" clusters show clear π^0 mass peak.

- × 7% of EHT triggers have a p0
- Clusters which fired the trigger produce narrower peak and reduce backgrounds

Systematic errors in the mass due to geometric effects and energy splitting of nearby clusters.

Reconstruction of π^{0} 's

Events are sorted by the η bin of the more energetic cluster.

Gains extracted from the reconstructed mass in each η bin and the "correct" mass of the π^0 ... in each η bin...

The Big Picture

Eta dependence from MIPs and π^0 's

Comparison between triggered and incidental π^0 's

